

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - I

Group Theory and Chemistry of Metal Complexes

Time	:	Three	Hours]	[Max	imum	Marks	:	80
				[Minimum	Pass	Marks	:	16

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

		OR	
	(c)	Explain mutual exclusion principle with example.	6
	(<i>b</i>)	Construct multiplication table of $C_{3\nu}$ point group.	8
1.	(<i>a</i>)	Explain different types of plane of symmetry with example.	6

DRG_42_(3)

- (2)
- (a) Explain conjugacy relation and classes. 6
- (b) The character table of D_3 point group is given below. By direct product method determine the product $E \times E$ and reduce it into the sum of irreducible representations.

D_3	E	$2C_3$	$3C_2$
$\overline{A_1}$	1	1	1
A_2	1	1	-1
Е	2	-1	0

(c) Evaluate the products σ_v , σ_y ' and $C_2 \sigma_v$ for a $C_{2\nu}$ point group.

6

8

Unit-II

<i>(a)</i>	Describe ligand group orbitals and				
	symmetry matched metal atomic orbitals				
	appropriate for σ bonding in an octahedral ML ₆ complex.	5			
<i>(b)</i>	Explain uses of IR Spectra to determine				
	structure of metal carbonyls.	10			
(<i>c</i>)	Explain nephelauxetic effect.	5			
OR					
(<i>a</i>)	Using MOT explain why F^{-} is a weak ligand.	7			
(<i>b</i>)	Describe preparation, properties and structure of $Ni(CO)_4$.	7			
	 (a) (b) (c) (a) (b) 	 (a) Describe ligand group orbitals and symmetry matched metal atomic orbitals appropriate for σ bonding in an octahedral ML₆ complex. (b) Explain uses of IR Spectra to determine structure of metal carbonyls. (c) Explain nephelauxetic effect. OR (a) Using MOT explain why F⁻ is a weak ligand. (b) Describe preparation, properties and structure of Ni(CO)₄.			

DRG_42_(3)

(Continued)

(3)

(<i>c</i>)	Write method of preparation and structure
	of dinitrogen complex.

Unit-III

3.	(<i>a</i>)	Describe spectrophotometric method for the determination of stability constant and composition of a complex.	7
	(<i>b</i>)	Explain structure of isopoly and heteropoly acids of W.	8
	(<i>c</i>)	Write a short note on silicides.	5
		OR	
	(<i>a</i>)	What is chelate effect? Explain the factors affecting it.	7
	(<i>b</i>)	Describe classification of silicates with example.	7
	(<i>c</i>)	Write a short note on nitrides.	6
		Unit-IV	
4.	<i>(a)</i>	Explain structure of higher boranes.	8
	<i>(b)</i>	Explain structure of tetrameric phosphazenes.	6
	(<i>c</i>)	Write a short note on trinuclear, tetranuclear metal clusters.	6
		OR	
	(<i>a</i>)	Describe method of preparation and structure of carboranes.	7
	<i>(b)</i>	Explain chain catenation and heterocatenation.	7
	(c)	Explain structure of borazines.	6
	<u> </u>		720

DRG_42_(3)

720

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - II

Concepts in Organic Chemistry

Time : Three Hours] [Maximum

[Maximum Marks : 80

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

 (a) Which type of molecules exhibit delocalized bonding? Discuss the molecular orbital picture to explain delocalized bonding and aromaticity of benzene.

(b) Explain the following:

- (*i*) Aromaticity of 4π and 8π electron system 5
- (ii) Conjugation and cross conjugation 5

DRG_97(4)

		(2)	
		(<i>iii</i>) Cyclopentadienyl cation is antiaromatic while cyclopropenyl cation is aromatic <i>OR</i>	5
	(<i>a</i>)	Explain bonding in fullerenes.	6
	(b)	Heat of hydrogenation of cyclohexene is -28.6 k cal/mole. The observed heat of hydrogenation of benzene to cyclohexane is -49.8 k cal/mole. Find out the resonance energy of benzene.	4
	(c)	Explain aromaticity on the basis of Huckel rule. Explain the aromaticity of azulenes.	10
		Unit-II	
2.	(<i>a</i>)	Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why?	8
	(<i>b</i>)	Discuss optical activity of allenes and spiranes.	8
	(<i>c</i>)	Explain the term chiral and achiral with suitable examples.	4
		OR	
	Exp	plain the following terms :	5×4
	(<i>a</i>)	Optical purity	
DRO	G_97	(Contin	nued)

(3)

- (b) Methods of resolution
- (c) Hybridization of atoms
- (d) Synthetic organic chemistry

Unit-III

3.	(<i>a</i>)	Account for generation, structure, stability and chemical reactions of carbocations.	10
	(<i>b</i>)	Give the mechanism of Hunsdiecker reaction.	6
	(c)	Complete the following reactions and indicate reaction intermediate in each case –	4
		(<i>i</i>) $CH_3 - C = CH_2 + HBr \rightarrow \dots$	
		(<i>ii</i>) $C_6H_5 - CH = C$ CH4	
		OR	
	(<i>a</i>)	Explain E_1 and E_2 mechanisms.	10
	(<i>b</i>)	Describe the generation and reactivity of nitrene.	5
	(<i>c</i>)	Write a note on Saytzeff's rule.	5

DRG_97(4)

(4)

Unit-IV

4.	(<i>a</i>)	Classify pericyclic reactions and explain correlation diagram taking example of 1, 3, 5 – hexatriene and 1, 3 – hexadiene	
		system.	10
	(<i>b</i>)	Explain the following: (<i>i</i>) Ene reaction	5×2
		(ii) Cope rearrangement	
		OR	
	(<i>a</i>)	Describe with suitable example of $3, 3$ and $5, 5$ – sigmatropic rearrangements.	10
	(<i>b</i>)	Explain the following: (<i>i</i>) 1, 3 dipolar cycloaddition reaction	5×2

(ii) Woodward-Hoffmann selection rule.

DRG_97(4)

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - IV

Theory and Application of Spectroscopy

Time : Three	e Hours]	[Maximum	Marks	:	80
--------------	----------	----------	-------	---	----

Note : Answer all questions. All parts of answer of each question should be written in one place. Be precise and to the point in your answer. The figures in the right-hand margin indicate marks.

Unit-I

 (a) Explain which of the following molecules exhibit (i) pure vibrational and (ii) pure rotational spectrum : 4 H₂O, HCl, BF₃, CO₂, CH₄, CCl₄, C₆H₆, N₂, O₂
 (b) Explain the following terms with reference to electromagnetic radiations : 8 (i) Scattering

DRG_223(4)

- (*ii*) Dispersion
- (iii) Absorption and Emission
- (iv) Polarization

<i>(c)</i>	Describe	unce	rtainty	princip	le	with	its	
	significanc	e in	spectro	oscopic	tec	ehniqu	ies.	8

(2)

OR

<i>(a)</i>	"Atomic	spectrum	is	line	spectrum	
	whereas	molecular s	pect	rum is	s obtained	
	as band." Give proper explanation.					
(<i>b</i>)	Explain t	he followin	g :			8

- (i) Natural line width
- (ii) Intensity of spectral lines
- (c) In which region of electromagnetic spectrum do the following frequencies exist ?
 - (*i*) 5 cm⁻¹
 - (*ii*) 1000 cm⁻¹
 - (*iii*) 12500 cm^{-1}
 - (*iv*) 60000 cm^{-1}

Explain the spectroscopic techniques associated with these spectrum.

Unit-II

2. (a) The rotational constant for H^1Cl^{35} is observed to be 10.5909 cm⁻¹. What are the values of B for H^1Cl^{37} and D^2Cl^{35} ? 4

DRG_223(4)

(Continued)

(<i>b</i>)	What is rotational constant? Compare the
	energy levels of a rigid diatomic rotor
	with its isotopically substituted molecule
	and discuss the discrepancy.

(c) How microwave spectroscopy is useful in the determination of bond length?
 Calculate the rotational constants of H₂ and HCl molecules. The bond lengths of H—H and H—Cl are 200 pm and 136 pm respectively.

OR

(<i>a</i>)	How pure rotational spectrum is obtained ? Explain line spacing obtained in this spectrum.	4
(<i>b</i>)	Classify molecules in terms of their moment of inertia and indicate which of the following molecules will show a microwave rotational spectrum : H_2 , CH_3Cl , CH_2Cl_2 , O_3 , SF_6 , C_2H_2 , NH_3 , CH_3CHO	8
(<i>c</i>)	Describe rotational spectra of linear polyatomic molecule. Unit-III	8

3. (a) Write the basic principle of Auger spectroscopy. (b) Write the principle and applications of electron diffraction microscopy. 8

DRG_223_(4)

(Turn Over)

8

8

(3)

(4)

(<i>c</i>)	Explain	variable	s on	which	inte	nsities	of	
	Auger e	electron	spect	rum pe	eaks	depend	1.	8

OR

	(<i>a</i>)	Explain the process of phosphorescence describing it's applications.	4
	(<i>b</i>)	Describe theory, instrumentation and applications of fluorometry.	8
	(c)	Explain the terms 'optical density' and 'turbidity'. Describe the instrument that can be used for measurement of optical density.	8
		Unit-IV	
4.	(<i>a</i>)	Write down the Quantum theory of Raman effect.	4
	<i>(b)</i>	Describe Resonance Raman Spectroscopy	8
	(c)	Explain selection rules for pure-rotational, vibrational and vibrational-rotational Raman spectra.	8
		OR	
	(<i>a</i>)	Why it is often desirable to determine Raman spectra in the gas phase?	4
	<i>(b)</i>	Write a note on CARS.	8
	(c)	Write instrumentation, advantages and limitations of Raman spectroscopy.	8

DRG_223_(4)

M.Sc. Ist Semester Examination

March-April 2021

CHEMISTRY

Paper - III

Quantum Chemistry: Thermodynamics and Chemical Dynamics – I

[Time: Three Hours]

Note: Answer all questions. The numerals written in the right hand margin indicate marks.

Unit I

(a) Construct the potential energy operator of a particle subjected to a harmonic oscillator potential.
 10

(b) Calculate the ground state energy for an electron that is confined to a potential well with a width of 0.4 nm. (h = 6.626×10^{-34} Js, m = 9.109×10^{-31} kg) 6

(c) Evaluate:

$$\int_{3}^{6} (2x^2+3x=5)dx$$

Or

 (a) Apply Schrodinger wave equation to a particle in one dimensional box and obtain the expression for the Eigen function and Eigen values of the energy.
 10

4

[Maximum Marks: 80]

(**b**) Solve the following:

$$\frac{d}{dx}\left(\frac{e^{x}}{\sin x}\right)$$

(c) Find the value of

$$\int \frac{dx}{(a-x)(b-x)}$$

Using the principle of partial fraction.

Unit II

2.	(a) Differentiate between the terms activity and fugacity. Discuss any one	•
	temperature and pressure on variation of fugacity. 10)
	(b) Define partial molar free energy and derive Gibbs Duhem equation.	5
	(c) Discuss the chemical potential of ideal gases and pure solids.	1
	Or	
	(a) Define partial molar property. What is the physical significance of	
	partial molar property? Discuss any one method for the determination	
	of partial molar property. 10)
	(b)Derive Van't Hoff equation representing the variation of equilibrium	
	constant with temperature. 6	
	(c) Verify the following Maxwell relations: 4	

(i)
$$\left(\frac{\delta S}{\delta V}\right)_{T} = \left(\frac{\delta P}{\delta T}\right)_{V}$$

(ii) $\left(\frac{\delta T}{\delta P}\right)_{T} = \left(\frac{\delta V}{\delta S}\right)_{P}$

4

Unit III

3.	(a) Discuss thermodynamics of electrified interfaces and Lippmann's	
	equation.	10
	(b) Compare the ionic strengths of solutions of uni-univalent, uni-	
	bivalent and bi-bivalent electrolytes at the same molality, assuming	
	complete ionization.	5
	(c) Describe the electrochemistry of solution.	5
	Or	
	(a) Define activity and activity coefficient. Describe any method for th	e
	determination of activity and activity coefficient.	10
	(b) Derive Debye-Huckel limiting law.	5
	(c) Calculate ionic strength of a solution containing 0.01M K ₂ SO ₄ and	
	0.1M KCl	5

Unit IV

4.	(a)) Discuss the kinetics of chain reaction between hydrogen and	
	bromine. Compute the activation energies for elementary processes	
	occurring in the $H_2 + X_2 \rightarrow 2HX$ reaction. (X=Cl, Br, I).	10
	(b) Discuss all about the oscillatory reactions.	5
	(c) Is it true that the pre-exponential factor of Arrhenius equation gets	
	physical meaning on developing collision theory?	5

Or

(a) What is the relationship between Transition state theory and statistic	cal
mechanics? Derive Transition state theory.	10
(b) Calculate the room temperature ratio of rate constants for two	
reactions that have the same A value but have E_a values that differ b	ŊУ
1.0 kcal/mol. (T=298K)	5
(c) Discuss various methods of determination of rate law.	5